Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Harry Adams,*
 Isaac Ojea-Jimenez and Simon Jones

Department of Chemistry, University of Sheffield, Department of Chemistry, Brookhill, Sheffield S3 7HF, England

Correspondence e-mail:
h.adams@sheffield.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.047$
$w R$ factor $=0.136$
Data-to-parameter ratio $=11.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

The Diels-Alder adduct of \boldsymbol{p}-benzoquinone and anthracene: 9,10-tetrahydro-9,10[1', $\left.2^{\prime}\right]$ -benzenoanthracene- $1^{\prime}, 4^{\prime}\left(2^{\prime} H, 3^{\prime} H\right)$-dione

The structure of the title compound, $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{2}$, has a rigid bicyclic backbone, and the six-membered diketone ring is in a shallow boat conformation. Both carbonyl groups are orientated away from the underlying benzene rings. The structure is compared to other similar anthracene Diels-Alder adducts.

Comment

Diels-Alder adducts from the reaction of anthracene with dienophiles have been used in a variety of applications, including the synthesis of discrete molecular architectures such as molecular gears (Stevens \& Richards, 1997). Although the crystal structures of a number of such derivatives have been disclosed, somewhat surprisingly the structure of the adduct (1) of p-benzoquinone and anthracene has not been previously reported. Tautomer (2) does appear in the Cambridge Structural Database (Version 5.25; Allen et al. 2002); however, its full structure has not been deposited (Hashimoto et al., 1999).

The 2-ene-1,4-dione ring in (1) is in a shallow boat conformation in which the bonds $\mathrm{C} 15-\mathrm{C} 16$ and $\mathrm{C} 19-\mathrm{C} 20$ are parallel, and all the atoms of both these bonds are coplanar (r.m.s. deviation $0.007 \AA$). The two sets of atoms $\mathrm{O} 2 / \mathrm{C} 18 / \mathrm{C} 16 /$ C20 and O1/C17/C19/C15 (which contain the carbonyl groups) are essentially planar (r.m.s. deviations 0.009 and $0.007 \AA$, respectively) and these planar groups ($\mathrm{O} 2 / \mathrm{C} 18 / \mathrm{C} 16 / \mathrm{C} 20$ and O1/C17/C19/C15) have dihedral angles with the previous plane $(\mathrm{C} 15 / \mathrm{C} 16 / \mathrm{C} 19 / \mathrm{C} 20)$ of $12.34(13)$ and $18.99(11)^{\circ}$,

Received 5 March 2004 Accepted 25 March 2004 Online 31 March 2004

Figure 1
View of (1) (50\% probability displacement ellipsoids). H atoms are not shown.
respectively. The difference in these angles is intriguing since the molecule itself is otherwise symmetrical. Unsymmetrical 9substituted anthracene Diels-Alder adducts (3) and (4) also show similar deviations, although this is obviously more pronounced for the carbonyl group located proximal to the 9substituent (Bharadwaj et al., 1985; Watson \& Nagl, 1988).

In the crystal structure, weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bonds (see Table 1) connect the molecules into a threedimensional network (Fig. 2)

Experimental

The title compound, (1), was prepared by the thermal Diels-Alder addition reaction of anthracene with p-benzoquinone (Wasielewski et al., 1989). Suitable crystals for X-ray diffraction analysis were obtained by slow evaporation of a dichloromethane/petrol (60-80) solution, resulting in colourless crystals.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{2}$
$M_{r}=286.31$
Triclinic, $P \overline{1}$
$a=6.870$ (3) \AA
$b=8.333$ (4) \AA
$c=12.707(5) \AA$
$\alpha=78.567(7)^{\circ}$
$\beta=78.991(7)^{\circ}$
$\gamma=79.361$ (7) ${ }^{\circ}$
$V=691.7$ (5) \AA^{3}

Data collection

Bruker SMART 1000
diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1997)
$T_{\text {min }}=0.961, T_{\max }=0.986$
4302 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.136$
$S=1.03$
2373 reflections
199 parameters
H-atom parameters constrained

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.375 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 1866 \\
& \text { reflections } \\
& \theta=5.0-54.7^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=15(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.46 \times 0.24 \times 0.16 \mathrm{~mm}
\end{aligned}
$$

2373 independent reflections
1741 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=25^{\circ}$
$h=-8 \rightarrow 8$
$k=-9 \rightarrow 9$
$l=-15 \rightarrow 14$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0738 P)^{2}\right. \\
+0.2377 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.24 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.27 \mathrm{e} \AA^{-3}
\end{gathered}
$$

Figure 2
Packing diagram (Spek, 2003) showing weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (dashed lines). O atoms are coloured red.

Table 1
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.95	2.52	$3.388(3)$	151
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O}^{\mathrm{ii}}$	0.95	2.46	$3.385(3)$	164
$\mathrm{C}^{2} 0-\mathrm{H} 10 \cdots 2^{\mathrm{iii}}$	1.00	2.57	$3.302(2)$	130

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $2-x,-y,-z$; (iii) $2-x, 1-y,-z$.
H atoms were positioned geometrically and refined with a riding model (including torsional freedom for methyl groups), with $\mathrm{C}-\mathrm{H}=$ $0.95-0.98 \AA$, and with $U_{\text {iso }}(\mathrm{H})$ values constrained to be 1.2 (1.5 for methyl groups) times U_{eq} of the carrier atom.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL (Bruker, 1997).

We thank the Department of Chemistry, University of Sheffield, for support (IO).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bharadwaj, P., Potenza, J. A., Ornaf, R. M., Rodriques, K. E., Knapp, S. \& Lalancette, R. A. (1985). Acta Cryst. C41, 1520-1522.
Bruker (1997). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Hashimoto, M., Takagi, H. \& Yamamura, K. (1999). Tetrahedron, 40, 60376040.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Spek, A. L. (2003). PLATON. University of Utrecht, The Netherlands.
Stevens, A. M. \& Richards, C. J. (1997). Tetrahedron Lett. 38, 7805-7808.
Wasielewski, M. R., Niemczyk, M. P., Johnson, D. G., Svec, W. A. \& Minsek, D. W. (1989). Tetrahedron, 45, 4785-4806.

Watson, H. W. \& Nagl, A. (1988). Acta Cryst. C44, 381-383.

